Skip to main content
Skip to "About government"
Language selection
Français
Government of Canada /
Gouvernement du Canada
Search
Search the website
Search
Menu
Main
Menu
Jobs and the workplace
Immigration and citizenship
Travel and tourism
Business and industry
Benefits
Health
Taxes
Environment and natural resources
National security and defence
Culture, history and sport
Policing, justice and emergencies
Transport and infrastructure
Canada and the world
Money and finances
Science and innovation
You are here:
Canada.ca
Library and Archives Canada
Services
Services for galleries, libraries, archives and museums (GLAMs)
Theses Canada
Item – Theses Canada
Page Content
Item – Theses Canada
OCLC number
1344010953
Link(s) to full text
LAC copy
Author
Lee, Eungkil.
Title
Design optimization of active trailer differential braking systems for car-trailer combinations.
Degree
MASc -- University of Ontario Institute of Technology, 2016
Publisher
[Oshawa, Ontario] : University of Ontario Institute of Technology, 2016
Description
1 online resource
Abstract
The thesis studies active trailer differential braking (ATDB) systems to improve the lateral stability of car-trailer (CT) combinations. CT combinations exhibit unique unstable motion modes, including jack-knifing, trailer sway, and roll-over. To address this CT stability problem, two ATDB controllers are proposed, which are designed using the Linear Quadratic Regulator (LQR) and [...]∞ robust control techniques. In order to design the ATDB controllers, a linear 3 degrees of freedom (DOF) and a linear 5-DOF model are generated and validated with a nonlinear CT model derived using CarSim software. Eigenvalue analysis is conducted to examine the effects of typical trailer parameters on the lateral stability of CT combinations. The contribution of the LQR-based ATDB controller to the enhancement of CT stability is assessed. The thesis also investigates the insensitivity of the [...]∞ controller to parameter uncertainties. A genetic algorithm (GA) is applied to find optimal control variables of the active safety systems. Numerical simulations demonstrate that the parametric study may provide a guideline for trailer design variable selections, and the proposed ATDB systems can effectively increase the safety of CT combinations.
Other link(s)
hdl.handle.net
ir.library.ontariotechu.ca
Subject
ATDB
Genetic algorithm
LQR
Mu synthesis
Eigenvalue
Date modified:
2022-09-01