Skip to main content
Skip to "About government"
Language selection
Français
Government of Canada /
Gouvernement du Canada
Search
Search the website
Search
Menu
Main
Menu
Jobs and the workplace
Immigration and citizenship
Travel and tourism
Business and industry
Benefits
Health
Taxes
Environment and natural resources
National security and defence
Culture, history and sport
Policing, justice and emergencies
Transport and infrastructure
Canada and the world
Money and finances
Science and innovation
You are here:
Canada.ca
Library and Archives Canada
Services
Services for galleries, libraries, archives and museums (GLAMs)
Theses Canada
Item – Theses Canada
Page Content
Item – Theses Canada
OCLC number
1132051198
Link(s) to full text
LAC copy
Author
Juneau, Pierre-Marc,
Title
New algorithms for the analysis of live-cell images acquired in phase contrast microscopy
Degree
Philosophiæ doctor (Ph. D.) -- Université Laval, 2015
Publisher
Québec : Université Laval, [2015]
Description
1 ressource en ligne (xxxiv, 400 pages) :illustrations en partie en couleur, fichier PDF (19,23 Mo)
Notes
Titre de l'écran-titre (visionné le 22 mai 2015).
Bibliographie : pages 237-249.
Abstract
La détection et la caractérisation automatisée des cellules constituent un enjeu important dans de nombreux domaines de recherche tels que la cicatrisation, le développement de l'embryon et des cellules souches, l'immunologie, l'oncologie, l'ingénierie tissulaire et la découverte de nouveaux médicaments. Étudier le comportement cellulaire in vitro par imagerie des cellules vivantes et par le criblage à haut débit implique des milliers d'images et de vastes quantités de données. Des outils d'analyse automatisés reposant sur la vision numérique et les méthodes non-intrusives telles que la microscopie à contraste de phase (PCM) sont nécessaires. Comme les images PCM sont difficiles à analyser en raison du halo lumineux entourant les cellules et de la difficulté à distinguer les cellules individuelles, le but de ce projet était de développer des algorithmes de traitement d'image PCM dans Matlab® afin d'en tirer de l'information reliée à la morphologie cellulaire de manière automatisée. Pour développer ces algorithmes, des séries d'images de myoblastes acquises en PCM ont été générées, en faisant croître les cellules dans un milieu avec sérum bovin (SSM) ou dans un milieu sans sérum (SFM) sur plusieurs passages. La surface recouverte par les cellules a été estimée en utilisant un filtre de plage de valeurs, un seuil et une taille minimale de coupe afin d'examiner la cinétique de croissance cellulaire. Les résultats ont montré que les cellules avaient des taux de croissance similaires pour les deux milieux de culture, mais que celui-ci diminue de façon linéaire avec le nombre de passages. La méthode de transformée par ondelette continue combinée à l'analyse d'image multivariée (UWT-MIA) a été élaborée afin d'estimer la distribution de caractéristiques morphologiques des cellules (axe majeur, axe mineur, orientation et rondeur). Une analyse multivariée réalisée sur l'ensemble de la base de données (environ 1 million d'images PCM) a montré d'une manière quantitative que les myoblastes cultivés dans le milieu SFM étaient plus allongés et plus petits que ceux cultivés dans le milieu SSM. Les algorithmes développés grâce à ce projet pourraient être utilisés sur d'autres phénotypes cellulaires pour des applications de criblage à haut débit et de contrôle de cultures cellulaires.
Other link(s)
Accès via CorpusUL
Subject
Cells Imaging.
Phase-contrast microscopy.
Image processing.
Cellules Imagerie.
Microscopie à contraste de phase.
Algorithmes.
Traitement d'images.
Cellules -- Imagerie
Microscopie à contraste de phase
Algorithmes
Traitement d'images
Date modified:
2022-09-01