Skip to main content
Skip to "About government"
Language selection
Français
Government of Canada /
Gouvernement du Canada
Search
Search the website
Search
Menu
Main
Menu
Jobs and the workplace
Immigration and citizenship
Travel and tourism
Business and industry
Benefits
Health
Taxes
Environment and natural resources
National security and defence
Culture, history and sport
Policing, justice and emergencies
Transport and infrastructure
Canada and the world
Money and finances
Science and innovation
You are here:
Canada.ca
Library and Archives Canada
Services
Services for galleries, libraries, archives and museums (GLAMs)
Theses Canada
Item – Theses Canada
Page Content
Item – Theses Canada
OCLC number
1019460769
Link(s) to full text
LAC copy
Author
Nwaekwe, Chinwe M.
Title
Channel estimation in a two-way-relay network.
Degree
M.A. Sc. -- University of Ontario Institute of Technology, 2011
Publisher
Ottawa : Library and Archives Canada = Bibliothèque et Archives Canada, 2012.
Description
1 online resource
Notes
Includes bibliographical references.
Abstract
<?Pub Inc> In wireless communications, channel estimation is necessary for coherent symbol detection. This thesis considers a network which consists of two transceivers communicating with the help of a relay applying the amplify-and-forward (AF) relaying scheme. The training based channel estimation technique is applied to the proposed network where the numbers of the training sequence transmitted by the two transceivers, are different. All three terminals are equipped with a single antenna for signal transmission and reception. Communication between the transceivers is carried out in two phases. In the first phase, each transceiver sends a transmission block of data embedded with known training symbols to the relay. In the second phase, the relay retransmits an amplified version of the received signal to both transceivers. Estimates of the channel coefficients are obtained using the Maximum Likelihood (ML) estimator. The performance analysis of the derived estimates are carried out in terms of the mean squared error (MSE) and we determine conditions required to increase the estimation accuracy.
ISBN
9780494811627
0494811625
Date modified:
2022-09-01